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ABSTRACT Inhibition of mitotic kinesins represents a novel approach for the
discovery of a newgeneration of anti-mitotic cancer chemotherapeutics.We report
here the discovery of the first potent and selective inhibitor of centromere-
associated protein E (CENP-E) 3-chloro-N-{(1S)-2-[(N,N-dimethylglycyl)amino]-
1-[(4-{8-[(1S)-1-hydroxyethyl]imidazo[1,2-a]pyridin-2-yl}phenyl)methyl]ethyl}-
4-[(1-methylethyl)oxy]benzamide (GSK923295; 1), starting from a high-throughput
screening hit, 3-chloro-4-isopropoxybenzoic acid 2. Compound 1 has demonstrated
broad antitumor activity in vivo and is currently in human clinical trials.
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Kinesins are a superfamily ofmotor proteins that utilize
the energy from ATP hydrolysis to transport cellular
cargoes alongmicrotubules.1-3 Mitotic kinesins are a

functional class of kinesins essential for mitotic spindle
assembly and function during cell division.4,5 Perturbation
ofmitotic kinesin activity results in cell cycle arrest inmitosis
and subsequent cell death.6 The past decade has seen an
increased interest in the development of small-molecule
inhibitors of mitotic kinesins as a new generation of anti-
mitotic agents.7-10 Since these agents specifically target
dividing cells, mitotic kinesin inhibitors have the potential
of capturing the therapeutic benefits of antimicrotubule (MT)
agents, such as the taxanes, while minimizing toxicities on
nondividing cells, thereby mitigating side effects such as
peripheral neuropathies.6-10 The most advanced mitotic
kinesin inhibitors in clinical development target kinesin
spindle protein (KSP or HsEg5), a mitotic kinesin required
for spindle pole separation during prometaphase.7-13 Cen-
tromere-associated protein E (CENP-E) is a mitotic kinesin
directly involved in coupling the mechanics of mitosis with
the mitotic checkpoint signaling machinery, regulating the
cell-cycle transition frommetaphase to anaphase.14-17 Dur-
ing mitosis, CENP-E is localized to the region of mitotic
chromosomes responsible for interaction with spindle

microtubules and it is essential for prometaphase chromo-
some movements that contribute to metaphase chromo-
some alignment. Disruption of CENP-E function using a
variety of methods, including antibody microinjection and
ablation of gene expression with siRNA, induces mitotic
arrest and a cellular phenotype characterized by misaligned
chromosomes arrayed on bipolar spindles, and leads to
subsequent cell death.18-23

From a high-throughput screen of a 700K-member small
molecule compound library looking for inhibitors of the
microtubule-stimulated ATPase activity of CENP-E, we iden-
tified a low-molecular-weight fragment (benzoic acid 2,
Figure 1) with a biochemical IC50 of 6.7 μM and no detect-
able cellular effect at 40 μM. Although we were unable to
pursue a typical fragment based optimization approach
utilizing X-ray crystallography or NMR,24 the good ligand
binding efficiency25,26 (ΔG/number of non-hydrogen atoms,
LE = 0.50), selectivity vs other kinesins, and structural
features amenable to rapid creation of analogues made 2
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an attractive starting point for further optimization. Reason-
ing that the lack of cellular activity might be due to the poor
permeability related to the presence of the carboxylate, a
small library of amide analogues was prepared by coupling 2
with a set of amino acid derivatives bearing a variety of side
chains and different C-terminal capping groups.27 Represen-
tative examples are shown in Table 1. Compounds 3g and
3h, which contain a benzyl group side chain and a primary or
methyl amide C-terminus, were found to have IC50 values
similar to screening hit2. The simple glycine amide analogue
(3a) was inactive, as were analogues with side chains con-
taining a simple alkyl chain (3b), H-bond donors or acceptors
(3c and 3d), or benzyl group homologues (3e and 3f). A
tertiary amide (3i) and methyl ester (3j) at the C-terminus
also rendered compounds inactive. Carboxylic acid analo-
gue 3k retained some potency but was 10-fold less active
than 3g.

With the identification of the phenylalaninamide as a new
active scaffold, we explored the substitution on the side
chain phenyl group to introduce further structural diversity. A
systematic Topliss scan28 revealed that substitution was
tolerated roughly equally at all positions with either elec-
tron-withdrawing or electron-donating groups (4a-4f) as
shown in Table 2. Substitution with a larger phenyl group
was dramatically more sensitive. A phenyl ring appended at
the 4-position (4g) improved the biochemical potency by 10-
fold whereas the same substitution at the 2- and 3-positions
(4h and 4i) dramatically attenuated potency. Encouragingly,

4g also showed the first sign of antiproliferative effect in the
SKOV-3 human ovarian carcinoma cell line with an IC50 of
6.2 μM. In light of these results, we investigated heterocyclic
substitution at the 4-position of the phenyl ring as ameans to
optimize physicochemical properties while further improv-
ing biochemical and cellular activity. An imidazolyl group
linked via the 2- or 4-positionwas found to be themost active
among a variety of five- and six-membered heterocycles
explored. In going from a modestly potent methyl substitu-
ent (4j) to a bulky tert-butyl group (4k and 4l) or fusionwith a
phenyl ring (i.e., benzimidazolyl, 4m), biochemical and
cellular potencies were further improved.

Having a potent compound (4m) in hand, we examined
whether there was a stereochemical preference for binding
to CENP-E. Both (S)- and (R)-enantiomers of 4m were
synthesized using enantiomerically pure starting materials,
and final chiral purity was>98% ee by chiral HPLC for each
antipode. As shown in Table 3, the (S)-enantiomer (5a) was
>400 times more potent than the (R)-enantiomer (5b),
demonstrating a pronounced stereochemical bias at the
binding pocket for the (S)-antipode. This stereoselectivity
translated well into cellular activity as cells treated with 5a
displayed the characteristic mitotic arrest phenotype
(bipolar spindles with misaligned chromosomes), whereas
5b showed no effect, providing strong support for an on-
targetmechanism for inhibition of cell proliferation based on
the inhibition of CENP-E motor protein.

Although the biochemical IC50 was greatly improved
upon incorporation of a biaryl group in the side chain, the
cellular activity of these compounds was still 10-100-fold
below their biochemical potency. Our efforts shifted to
modification of the C-terminus in an attempt to narrow this

Figure 1. Structures of 1 and 2.

Table 1. Biochemical Activity of Benzamide Analogues

compd R1 R2 CENP-E IC50 (μM)

3a H NHMe >100

3b iPr NHMe >100

3c CH2OH NHMe >100

3d CH2CONH2 NHMe >100

3e Ph NHMe >100

3f CH2CH2Ph NHMe >100

3g CH2Ph NHMe 6.5

3 h CH2Ph NH2 5.4

3i CH2Ph N(Me)2 >100

3j CH2Ph OMe >100

3k CH2Ph OH 61

Table 2. Biological Activity of Phenylalanine Amide Analogues

compd R
CENP-E IC50

(μM)
SKOV-3 IC50

(μM)

3g H 6.5 >25

4a 4-OH 3.3 >25

4b 3-OH 6.2 >25

4c 2-OH 8.8 >25

4d 4-F 9.7 >25

4e 4-Cl 7.2 >25

4f 4-Me 5.4 >25

4g 4-Ph 0.36 6.2

4h 3-Ph 36 >25

4i 2-Ph >100 >25

4j 4-(2-Me)-imidazol-4-yl 1.0 >25

4k 4-(2-tBu)-imidazol-4-yl 0.13 1.2

4l 4-(4-tBu)-imidazol-2-yl 0.19 4.4

4m 4-benzimidazol-2-yl 0.066 3.1
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differential. Reduced C-terminal groups such as hydroxy-
methyl (6a and 6b), aminomethyl (6c) and aminoethyl (6e)
gave modest improvements to both the biochemical and
cellular potency (Table 4). Remarkably, however, a one-
carbon extension to a hydroxyethyl group (6d) significantly
improved cellular potency (SKOV-3 IC50=94 nM), with only
a modest improvement in biochemical activity. Detailed
mechanistic studies of 6d and 4g revealed that there was a
significant difference in their modes of inhibition. Steady-
state kinetic studies showed that 6dwas uncompetitive with
ATP, while 4gwas ATP-competitive. Since the ATPconcentra-
tion in cells is much higher than that used in the biochemical
assay (500 μM), this could help explain the disparity be-
tween the biochemical and cellular activities for ATP-com-
petitive inhibitors such as 4g.

Wepostulate that both 4g and 6d interact with the enzyme
in an allosteric binding cleft adjacent to the ATP binding site
and that the relatively minor structural modification per-
turbs the ATP pocket such that a change in inhibitormodality
is observed.29 Most importantly, the improved cellular activ-
ity proved to be general with the incorporation of the
hydroxyethyl into the inhibitor template and fueled further
exploration.

Maintaining the hydroxyethyl moiety, we further explored
substitution of the side chain phenyl group. Transposition of

one of the imidazole nitrogens to give isomeric imidazole 7
showed no advantage. However, constraining the methyl
and tert-butyl groups to form an imidazopyridine ring (8a)
resulted in a significant increase in biochemical and cellular
activity (Table 5). Unfortunately, 8awasmuch less soluble,30

and since our goal was to identify a drug that could be
administered intravenously, maximizing aqueous solubility
was crucial. Encouragingly, the addition of a hydroxyl group
(8b) to the imidazopyridine side chain restored the solubility
with no attenuation of biochemical and cellular potency.31

Although significant gains in enzyme and cellular potency
had been realized, the rat pharmacokinetic (PK) profiles of
these analogues were characterized by high clearances and
short half-lives. In an attempt to rationalize the underlying
poor PK, the in vitrometabolism of selected analogues in rat
and human hepatocytes and microsomes was investigated.
The results indicated that hydroxylation of the biaryl side
chain and oxidation of the primary hydroxyl group were the
most prevalent metabolic pathways, and derivatives that
incorporated modifications likely to reduce or block these
putative metabolic sites were targeted.

Modification of the side chain, including the incorporation
of fluorine atoms at various positions on the side chain aryl
groups, had little effect on PK.32 We next examined alter-
natives to the C-terminus hydroxyethyl group, keeping
in mind that maintaining the ATP-uncompetitive mechan-
ism of inhibition would be necessary for retention of
good cellular activity. Although various cyclic and acyclic
groups maintained high levels of enzyme and cellular
potency, substituted glycinamides also provided a moderate
boost in exposure coupled with significantly improved
solubility. These efforts ultimately led to the identifica-
tion of GSK923295 (1), a potent inhibitor of human
CENP-E.27,33,34

Under steady-state kinetic conditions, 1 behaves as an
uncompetitive inhibitor of both ATP and MT (Table 6). To
ascertain its kinesin selectivity, 1 was evaluated against a
panel of mitotic human kinesins and showed only minimal
inhibitory activity (<25%) at 50 μM.

Compound 1 exhibits inhibition of cell proliferation in a
broad panel of human solid tumor and hematological cell
lines and induces mitotic arrest leading to apoptosis and cell
death.33,34 Consistent with CENP-E inhibition, cells treated

Table 3. Stereoselectivity of Phenylalanine Amide Analogues

compd stereo CENP-E IC50 (μM) SKOV-3 IC50 (μM)

5a S 0.032 2.0

5b R 13.8 >20

Table 4. Effect of C-Terminal Modification on Biological Activity

compd R1 R2

CENP-E IC50
(μM)

SKOV-3 IC50
(μM)

4l CONHCH3 H 0.19 4.4

6a CH2OH H 0.056 2.7

6b CH2OH Me 0.043 1.1

6c CH2NH2 Me 0.050 1.4

6d CH2CH2OH Me 0.022 0.094

6e CH2CH2NH2 Me 0.10 7.2

Table 5. Biological Activity of Selected Imidazopyridine Analo-
gues

compd R
CENP-E IC50

(nM)
SKOV-3 IC50

(nM) sol30 (μM)

7 56 41 23

8a Me 3 15 1

8b (S)-CH(CH3)OH 7 14 21
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with the drug display a phenotype characterized by bipolar
mitotic spindles with misaligned chromosomes.

Compound 1 also showed dose-dependent activity in a
Colo205 human tumor xenograft efficacy model.35-37 Mice
were administered 1 as a single dose three consecutive days
perweek for twoweeks (6 total doses) resulting in significant
effects with tumor regression observed for the top doses
(125 and 250mg kg-1) (Figure 2). In other studies, 1 showed
broad spectrum activity against a range of human tumor
xenografts in mice.36

Compound 1 showed an overall profile suitable for clinical
development, including a solubility of 5 mg mL-1 in 0.1 M
acetate buffer at pH 5.6. Compound 1 exhibited half-lives in
the rat and dog of 1.3 and 2.1 h, respectively. This has
translated to dose-proportional PK profile in humans with a
mean terminal elimination half-life of ∼12 h.38

In summary, starting froma fragment based screening hit,
benzoic acid 2, SAR studies culminated in the discovery of 1,
a highly potent and selective inhibitor of CENP-E. Inhibition
of CENP-Ewith 1 inducesmitotic arrest in human tumor cells
and tumor regressions in vivo. CENP-E inhibition is expected
to have a beneficial effect on cancer therapy, and 1 is being
evaluated in human clinical trials for the treatment of
cancer.39

SUPPORTING INFORMATION AVAILABLE Experimental
procedures and analytical data for all compounds. This material is
available free of charge via the Internet at http://pubs.acs.org.
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